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Platforms have often been used in information communications technology (ICT) industries to success-

fully harness innovations from diverse sources. The application development platform is the industrial

organization used to create value out of information technology (IT). Applications developers convert a

technical opportunity into economic value. A platform host will invest in the infrastructure, both techno-

logical and institutional, to coordinate application innovations for some general purpose technology. This

lowers the cost of innovation immensely for the application developers. Especially for a new industry, plat-

forms create an opportunity for disruptive innovations to emerge from the surge of entrepreneurial entry.

The subsequent variety of applications developed attracts end-users, inducing further developer entry. The

platform exploits social increasing returns to scale to produce diverse successful applications, increasing the

economic value of the technical progress embodied in a platform’s general purpose components.

The indirect network effects from this platform environment drive towards a tip to a single platform.

Fragmentation of developers and consumers across multiple platforms is costly in several ways. The deploy-

ment of multiple platforms involves wasteful duplication. This duplication is true in any increasing returns

industry, but in platform industries, the costs of duplication are borne in substantial part by users and devel-

opers rather than by platform suppliers. Both sides may delay entry or adoption due to uncertainty about

when the market will tip and to which platform, diminishing the reinforcement power of the indirect network

effects on any particular platform, and leading to slower diffusion of the underlying platform technology and

application innovations across all platforms. Developers who enter fragmented markets face the cost of a

smaller pool of demand if they choose one platform, since potential customers are spread across multiple

platforms, or the cost of multihoming (developing for both platforms) in order to reach their entire potential

demand.

However, when we examine the most recent and important example of an ICT platform industry, the

mobile application (app) ecosystem, the industry seems to have stabilized as a market split evenly between

the Apple iOS and Google Android platforms. This industry started in October, 2008, with the release of

the first apps for the Apple iPhone on the iTunes store. Although existence of multiple platforms at the

beginning of an industry is not uncommon, this industry has been stably split on both the end-user and

developer side for the past two years. What explains the lack of tipping in this industry? Will it continue?

To answer these questions, we propose and estimate a model of developer choice of platforms (including

the choice to multihome) in the mobile app industry. We use data on developers’platform choices and on

the app’s usage on the entered platforms to estimate the developers’expected profitability from entering

either or both platforms. We have a new solution to the problem that the list of potential entrants may be

selected. Our estimates suggest the following results salient to a potential platform tip:
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1. Android and iOS are roughly equally attractive as platforms to US developers. This is consistent

with the observation that neither platform has attracted significantly more applications than the others.

The tie in attractiveness appears to hold across categories of apps, so that the existing spread of

developers across platforms market is not due to observable sorting of differentiated developers to

differentiated platforms, but instead reflects smaller, idiosyncratic errors in developer preferences. This

suggests the developer side of the platform market is tippable, in the sense that there is no body of

developers with strong incentives to stay with a minority platform.

2. Large developers and developers from established (outside mobile) firms are more likely to mul-

tihome. The expected success in terms of users for these developers is consistently high on both

platforms, so it is worth it for these developers to incur the fixed costs of multihoming. Thus, even

though a substantial number of apps do not multihome, from a user perspective the most popular

apps are multihomed; an index-number calculation suggests that most of the contribution from app

availability to the attractiveness of either platform to users comes from these large apps. This suggests

that the user side of the platform market has little incentive to tip, and that a very large shock would

be needed to lead most users to choose one platform over the other. A tip seems far in the future.

3. With no near term tip likely, platform fragmentation will likely persist. Platform fragmentation

has different implications for different categories of market participants. Users are hardly impacted

in the short run, and large developers spread the fixed costs of multihoming over large demand. En-

trepreneurial developers, however, are strongly impacted. The idea that mobile platforms would lead

to wide ranging entrepreneurial experimentation with market-wide implications is undercut by this

impact.

Ultimately, we identify an asymmetry between large, established firms and entrepreneurial firms, but not

in the way many anticipated: the costs of platform fragmentation are borne by the smaller entrepreneurs,

while the larger firms are able to overcome these costs and multihome. In this setting, the potential for

disruptive entrepreneurial innovation is diminished. Our discussions with industry participants suggest that

these costs are marketing costs to become visible to the consumer; large, established firms avoid these costs

due to their existing consumer relationships. Furthermore, the platform equivalence and multihoming by

the most demanded apps suggest that the mobile apps industry is unlikely to tip.

The paper is structured as follows: Section I. reviews the relevant literature. Section II. describes the

industry setting of mobile apps. Section III. describes our model of developer choice over platforms and

multihoming. Section IV. describes our data. Section V. describes how we implement the economic model

to analyze our data. We discuss our findings in Section VI.. The last section concludes.
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I. Literature Review

Most of the economics literature on the mobile(wireless) industry studies wireless carriers like AT&T

and Verizon. A new literature studies hardware devices, such as the Apple iPhone, in connection the carriers

(Wilkinson (2013), Chintagunta et al. (2013)). Our closest antecedent is the work of Kevin Boudreau

on applications development in the early handheld device era preceding smartphones (Boudreau, XXX).

While Boudreau focused on the organization and management of the platform, our contribution, in this

and in earlier papers (Davis et al. (2013), Bresnahan et al. (2013)) has been to look at the competition

in the software that defines the platforms (iOS, Android, Windows mobile, etc.) and at the competition in

application software that creates economic value on top of those competitive platforms.

A very successful literature studies the choice of platforms or, very similarly, standards, by suppliers of

complementary products. Rysman (2004) is the classic paper, where the complements to a yellow pages

"platform" are advertisements. Some of this literature has taken up the question of complementor choice

in applications platforms (Lee (2013), Dube et al. (2010)) and Boudreau (XXXX) have considered changes

in platform policies, such as openness. Most of these papers perforce study a mature platform or two

sided market after the races, if any, for standardization have been run. Only a few papers (Augereau et

al. (2006), Dranove and Gandal (2003), Brown and Morgan (2009), Cantillon and Yin (2013), Church and

Gandal (1992), Corts and Lederman (2009)) study the race itself. Uniquely among these papers, we study

a development platform (as opposed to a trading platform) in a context where multihoming on one side of

the market is possible.

Although the theoretical literature on suggests a number of reasons why platforms may coexist (Econo-

mides and Siow, XXXX, Ellison & Fudenberg, 2003; XXXX, XXXX), only Brown & Morgan (2009) and

Cantillon & Yin (2013) empirically analyze horizontal and vertical reasons for coexistence. Again, their work

examines trading platforms, and their markets ultimately tip. We contribute to the literature by identifying

market forces which would cause platform coexistence to persist, and we therefore find different reasons than

those identified in Brown & Morgan (2009) and Cantillon & Yin (2013).

We model the developers’decision to write for a platform as entry into the market defined as users of

that platform. As a result, our work builds upon the market entry literature, reviewed in Berry and Reiss

(200x). The central inference of the entry literature arises from studying the choice of potential entrants

to go in to or stay out of the market. A large literature, descended from the work of Berry (1992) and

Sutton (1991), identifies the list of potential entrants into a market as the actual entrants, present or past,

in another market or markets.1 This obviously could create a problem of selection if profit in the market

1. Another approach avoids the problem of selection by specifying a list of niches that might be entered rather than the list
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at hand is correlated with profit in the market(s) used to define the list of potential entrants. We follow in

this tradition, and our model explicitly addresses the problem of selection in the list of potential markets.

We deal with the selection issue by writing a single model that jointly predicts entry into two markets.

In each market, we observe not only the fact of entry but also, if demand is above a threshold, the number

of users. We condition on satisfying the minimum threshold of quantity demanded on at least one platform,

and construct a model in which we can deal with the selection of potential entrants into each platform.

Our identification strategy requires parametric assumptions about the shape of returns to entry; because we

observe demand as well as entry, these assumptions are testable.

Another advantage of this sample approach is that we are identifying multihoming costs off of developers

who we know are capable of producing valuable apps. This allows us to address questions about the

contribution to either single platform competitive advantage or to multihoming, i.e., to consumer advantage,

without regard to consumer platform choice.

II. Industry Setting: Mobile Apps

An outstanding and dynamic example of the platform industrial organization is the dramatic rise in

consumer use of mobile devices and the explosion of applications software running on those devices —mobile

“apps." The invention of mobile app platforms has permitted developers to offer a system solution to their

customers — re-using, not reinventing, the technology of mobile phones, mobile transmission, wi-fi, cloud

technologies, and many other components.

The newness and popularity of the mobile apps industry has created many misconceptions about the

industry structure and its practices, so we use this section to clarify the facts. Figures I and II show the

history of users and apps on both platforms in the US. It is apparent from these graphs that the industry

is currently in an even split of market share, and has been in this fragmented state for quite a while given

then short length of the industry’s entire history.

In theory, and as speculated in the industry press, there are a number of factors that may explain the

fragmentation in the installed base. On the consumer side, the demographics of the iOS and Android users

are in fact different: Android users tend to have lower incomes, for example. The split between Android

and iOS may be a vertical differentiation over the cost of the device. It may also reflect differentiation in

preferences over the device. These may also be correlated with differentiated preferences in apps, which

would then lead to developers splitting themselves between the two platforms. It is possible that consumers

are multihoming with multiple smartphones, but this behavior is rare enough to not matter at a market

of potential entrant. Examples include Bresnahan and Reiss (1991), Seim (xxxx) and Mazzeo (xxxx).
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Figure I: Fragmentation of users. Source: http://www.tech-
thoughts.net/2012/07/global-smartphone-market-share-trends.html#.UtdYR_RDtnJ
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Figure II: Fragmentation of Developers. The solid dotted blue line is iOS apps. The
sporadic orange dots track Android apps. Source:

http://148apps.biz/app-store-metrics/?mpage=appcount,
http://en.wikipedia.org/wiki/Google_Play#Applications, and

http://www.appbrain.com/stats/number-of-android-apps, all accessed January 15, 2014
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Even if the preferences of consumers did not drive developers to different platforms, there are additional

reasons that we might find an equal number of apps for both platforms. When choosing between two

platforms, developer profitability depends not only on the relative size of the installed base of users, but also

on the technical and contractual features. The technical features of an applications platform are a driver

of application development cost, as the general-components in the platform are combined with the specific

innovation of the application to create a usable product. Applications platforms often offer contracts, rules,

and restrictions to developers that affect their profitability. There are a number of ways in which the iOS

and Android platforms differ on these dimensions from the perspective of the developer (see Bresnahan

et al. (2013)). Finally, developers might be multihoming, if the costs of multihoming are low enough

and the benefits are large enough. The incentive to multihome is particularly strong when platforms are

approximately equal sized. Indeed, if the benefits to reaching a large body of users on the other platform is

high enough, it could outweigh even the benefits of platform differentiation that might drive a developer to

favor one platform over the other.

One very important fact to note from Figure II is the huge number of apps on both platforms. These

huge number of applications may make it easier for the consumer to adopt the iOS or Android platform

without too much consideration of which platform has the most applications: indirect network effects for

the consumer may be overwhelmed by a critical mass of apps on each platform that provide suffi cient utility.

However, this same fact makes it extremely diffi cult for app developers to gain visibility and get matched to
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the right consumer. The developers may be spreading across platforms to reduce competition as much as

possible.

One way in which the platforms do not differ significantly is the mechanism through which they pre-

dominantly match apps to users: top lists. These top lists recommend apps based on aggregate lagged

user downloads, employing typical collaborative filter methods to try and identify the most useful or pop-

ular apps. The most important top lists cut across app categories, since the app categorization scheme is

weak. Unfortunately, since the stores and these mechanisms are effectively the only channels through which

apps can reach their customers, they create incentives for apps to game the system and try to "buy" their

way into the top rankings. The commercialization / distribution facilities used by the platform providers

reward success for app developers with more success, and reward near misses on success with very limited

visibility. Thus app developers impose positive externalities on one another through the usual platform

positive-feedback mechanisms, but also impose negative externalities on one another through congestion in

visibility.

Even without these distortions, simply trying to get noticed out of the close to 1 million apps competing

for a users attention will require marketing expenditure for most apps, and the success of this expenditure

is not assured. Our many discussions with industry participants corroborates patterns we find in the data

regarding the high costs of marketing an app. In Figure III, we profile the probability that apps make it

into the Top 50 and Top 10 lists. The initial increase in the first few days after launch of the probability

of being in these top lists is often fueled by apps who typically invest in marketing through "incentivized

downloads" (purchasing downloads from users) and advertising their app in other apps for the express

purpose of increasing their standings in the rankings. These launch campaigns average approximately $0.5

million. Despite these efforts, the probability of being on the top lists drops dramatically in the 2nd through

4th weeks, indicating that for many of the apps, these incentivized downloads and advertising campaigns

did not work.

These industry characteristics suggest that two sets of costs face the developer, creating a gap between

the decision to supply a given platform and the realized profitability on that platform. The first set of costs,

the technical costs of porting, are determined by how feasible it is to write on the other platform. The second

set of costs are determined by the market costs of being profitable on the other platform. Note that the

second set of costs are defined by the market institutions implemented by the platform host. Each of these

costs may be larger or smaller for developers of different types.
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Figure III: Costs and Risks of Buying into the App Store Rankings
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III. Economic Model

We model developer and user value from choosing a particular platform. The developer and users models

differ both economically and econometrically. In this section, we lay out the economic models.

III.A. Developers

Developers choose on which of two platform(s) p to publish app a: p = i, the iOS platform; p = d, the

Android platform; or p = b, both platforms. Throughout this section we suppress the subscript a. We

model this as deciding which applications market(s) to enter, where the market boundaries are defined by

the platforms. A developer who only publishes an iOS app can sell to iPhone users but not to Android

users. Like all entry models, our model assumes that the developer has fixed costs and will only produce if

the size of the market is suffi ciently large to cover them.

We model variable profit for each app as a linear function of the number of customers, following entry

models generally, and label the variable profits per customer on platform p as Mp. For platform economics,

it is important to distinguish between Up, the number of users of platform p, and rp, the app’s "reach" on

platform p, measured as a the fraction of Up that use the app. The number of customers for the app is

Up × rp, but the two parts have different economics. The overall attractiveness of the platform determines

Up, while the attractiveness of the particular app itself determines rp.

Finally, let the fixed costs of publishing an app on one or more platforms be Cp , with Cb ≤ Cd + Ci.

We note that C includes both the technical costs of writing the app and the marketing costs of introducing

it to customers. The variable profit of an app on a platform is πp = Up ×Mp × rp. It is profitable to write
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the app for platform p if

(1) Up ×Mp × rp ≥ Cp.

It is profitable to write for both platforms if (1) holds for both i and d or (a weaker condition) if

(2) Ui ×Mi × ri + Ud ×Md × rd ≥ Cb.

Finally, prior to entry, a developer may not fully know profits. We assume that the developer knows

Up and Mp and has a signal of rp, which we call r̃p. Let r̃ = (r̃i, r̃d) in an obvious notation. This

lets us characterize the conditions determining S = (Si, Sd), the developer’s choice of whether to supply a

given app to each platform. Assume a risk neutral developer, and denote π̃p = E[πp|r̃] as the developer’s

forecast of variable profits on platform p based on both reach signals (both will matter in general). Then

the conditions for each supply choice are

(3)

S = (1, 1) if π̃i + π̃d ≥ Cb

otherwise

S = (1, 0) if π̃i ≥ Ci & π̃i + π̃d ≤ Cb

S = (0, 1) if π̃d ≥ Cd & π̃i + π̃d ≤ Cb

otherwise

S = (0, 0)

We have no model of pricing as a determinant of profit because price plays little role in developer profit

for most apps. Corporate apps typically add to the profit of other products, as, for example, the United

Airlines app contributes to the sales of tickets. Entrepreneurial apps typically attract an audience that can

be monetized, either by in-app payments or by advertising. Since the price of the app itself so rarely plays

a role, we do not model it and instead include a per-user profit in the model.

III.B. Users

Users choose a single platform in our industry, in contrast to developers who can and do multihome.

From an indirect networks effects perspective, what matters is the aggregate demand for a platform by

users, so we focus our user modeling on an index of the contribution of the apps available on a platform to
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the attractiveness of a platform to a large number of users.

Our model of users will not lead directly to a user choice model for estimation but instead to an index

of the value of the all the apps available to consumers on a platform. Thus we now shift our focus from

each app to all apps. The set of apps on a platform, Np, and in an obvious notation we say that app a is

available on a platform if a ∈ Np and that app a has reach rpa on p. Since most apps are free, the usual

index number problems for discrete choice are not present.2 Reach is a measure of the quantity demanded

of an app, in the specific sense of the fraction of users who choose to use the app. Accordingly, we measure

the contribution of all apps to the total attractiveness of a platform as
∑
a∈Np

rpa.

III.C. Three Simplifying Assumptions

First, we assume Cb = Ci + Cd. This is an economic assumption that the platforms are very different,

i.e. that there is no fixed-cost savings from writing for both. In our context, we make this assumption

because of what developers have told us about their cost function. It is not that porting is extremely

diffi cult technically, which would tend to make the Cb close to Ci + Cd. Instead, it is the large size of

platform-specific marketing costs.

Second, we change the units of the fixed costs and write κp = Cp/Mp/Up. This is simply a normalization.

We will estimate κ; the normalization determines the interpretation. In our application, Ui is slightly smaller

than Ud, so if we find that κd > κi the interpretation is either that the fixed costs of writing an Android

app are higher Cd > Ci or that the per-customer profits of an Android app are lower Md < Mi. We cannot

distinguish these two hypotheses.

Third, in our statistical model of app supply, we normalize κp to be a constant across apps of a similar

observable type, so that variation in profitability across apps is driven only by rp. This is an economic

assumption; since κp = Cp/Mp/Up, this is the assumption not only that there is no fixed-cost errors3 but

also that per-customer profits are constant across apps.4

We can now simplify the developer’s supply choice in Equation (3) as

Si = 1⇐⇒ π̃i ≥ Ci

Sd = 1⇐⇒ π̃d ≥ Cd.

2. See Small & Rosen (1981).
3. The distinction between a random effect in fixed cost and a random effect in variable profits will not matter much for

platform choice. See Bresnahan & Reiss (1991). Since we have a continuous-valued dependent variable, reach, we do need a
variable-profit/market size error.

4. This assumption will be less problematic if we include regressors that capture the main observable variation in profits per
customer in κ. These include indicators for in-app purchases, advertising, and some measure of high-engagement categories
(e.g., the games category indicator).
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IV. Data

We have gathered a sample of apps which were written for either iOS (iPhone), or Android phones, or

both. We gathered our primary data set from public sources with the help of research assistants. We asked

them to download each app in the sample and to fill in a questionnaire with 200 questions regarding the

app’s use of advertising, in-app purchases, and other monetization strategies. We also asked them to visit

the developer’s website to learn about the app’s platform availability and developer characteristics.

We match these data to the January 2013 Mobile Metrix dataset from comScore, filling out our ques-

tionnaire for apps as necessary to ensure full coverage of the comScore apps. Two panels, one with Android

phones and the other with iPhones, of approximately 5,000 US adult users, allow comScore to track their

possession and usage of apps. We observe their data aggregated to the app*platform*month level. In those

data, however, we only observe apps which meet a minimum usage test for each month on each platform:

comScore includes data on the app only if it is used on that platform by more than 5 (at least 6) unique

users.5 As a result, while we may know from our primary data set that Sp = 1, if the app does not meet

the usage criterion on a particular platform, then nothing about it is reported on that platform, i.e., S∗p = 0,

where S∗p and the corresponding S
∗ denote the supply of an app on a platform as reported by comScore.

We further drop apps produced by Apple, Google, carriers, and OEMs, which are typically pre-loaded onto

devices, so that an observation is an app developed by an independent software vendor. This results in

1, 044 apps.

We observe S, S∗, and r∗, comScore’s report of its estimate of the app’s “reach” for each platform on

which the app has met the usage criterion. Note that r∗p is censored by the comScore sampling rule that

it is not reported unless S∗p = 1. This set of indicator variables concerning the developer’s publication

decisions and the app’s satisfaction of comScore’s usage criterion, together with the reach of the app when

that criterion is met, form the dependent variable in our model.6

Figure IV shows a histogram of apps and their observed reach r∗ (horizontal axis) in our sample. The

vertical axis is the fraction of apps which fall into each of the equally spaced bins. This market is very

skewed on both platforms, with most apps being in the lowest bin of reach (the far left bin), and a very few

apps reaching almost all users (the far right bin).

Figure V shows the distribution of S and S∗. Each slice of the pie chart shows one value of (S, S∗). The

first letter in each pair indicates whether the app was written for both platforms or only Android or the

iPhone, based on data collected by our research assistants. The second letter in each pair indicates whether

5. comScore actually tracks apps with less than this level of usage if a client has requested tracking. We drop these apps to
ensure uniform truncation of observations from the comScore dataset.

6.We multiply the “reach”estimate on each platform by 5,000, the size of comScore’s platform-specific sub-panels, to back
out the number of panel-members who used the app.
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Figure IV: Distribution of Apps over Reach. Source: comScore, January 2013. This
histogram of app reach has equally spaced bins. The vertical axis is the fraction of apps

in the bin.

Figure V: Platform Choices (S, S∗) with b= both, d=Android, i=iOS.

12



TABLE I: Descriptive Statistics of S, S∗, and r∗; 1,044 apps

(S, S∗) mean r∗ st. dev. r∗ min r∗ max r∗ N
(b, b) : r∗i .028 .047 .001 .30 241
(b, b) : r∗d .030 .051 .001 .30 241
(b, i) .010 .012 .001 .122 212
(b, d) .010 .014 .001 .086 225
(i, i) .011 .027 .001 .30 146
(d, d) .012 .024 .001 .30 220

overall: r∗i .019 .037 .001 .30 599

overall: r∗d .017 .033 .001 .30 686

TABLE II: Descriptive Statistics of X; 1,044 apps

X Percent of Apps
game 27%

publicly traded 37%
mobile 42%
online 29%
offl ine 29%

the app had enough quantity demanded to be observed in comScore on both or only one of the platforms.

For example, the notation (b, d) means that the app was written for both platforms but crosses the comScore

threshold only on the Android platform. Descriptive statistics for the dependent variables are given in Table

I.

The characteristics associated with app a (or its developer), Xa, comprise the regressors in our estimation.

All our regressors are indicator variables; descriptive statistics are provided in Table II. We use information

about whether the developer is publicly traded and the developers’other lines of business to indicate whether

the developer is an established firm or an entrepreneur. Developers can be a mobile-only business (e.g.,

Rovio Entertainment, maker of Angry Birds) or have other lines of business online (e.g., Facebook) or offl ine

(e.g., Delta, Nike, other brick and mortar stores selling physical goods or services). Publicly traded firms

that have another line of business either offl ine or online are considered established firms. Firms that are not

publicly traded and are mobile only are considered entrepreneurs. Although 54% of apps exhibit advertising

and 29% of apps use in-app purchases (IAP), it turns out that publicly traded apps are almost perfectly

correlated with apps with no advertising and no IAP, so we only use publicly traded in our final estimation.7

Our model will produce estimates of the joint distribution of the demand for apps across platforms.

Some raw correlations illuminate the information in our data that will identify key parameters. In Figure

7.We did use both ads and IAP with no significant contribution in our results.
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V, note that, based on S , over half of the apps multihome, but that only one-third of the apps appear to

multihome in comScore based on S∗. This means that an app was able to achieve threshold reach on one

platform, but not the other. Is this driven by different customer preferences on the platforms, or different

marketing costs? The variation in this gap across the different observables contained in X will allow us to

identify parameter values which will suggest that the latter is the stronger driver.

The correlation between r∗d and r
∗
i when both are observed (S

∗ = (1, 1)) is 0.60. When we restrict

attention to those apps for which the demand threshold is raised to 1%, the correlation is 0.86. This

correlation will identify ω, a structural parameter on the correlation of the joint distribution between r̃i and

r̃d.

V. Econometrics of Developer Supply

Our econometric model of developer supply needs to do four things. First, it needs to predict the

probability that a particular developer publishes for either or both platforms and the success, measured as

(censored) reach, the app receives there. Second, it needs to deal with the problem of selection of potential

entrants. Third, it needs to accommodate both the parts of the sampling frame we know about, e.g.

comScore’s "panel," and the parts we do not know about, such as heterogeneity across developers. Finally,

it needs to provide estimates, to the extent there is information in the data to identify them, of the main

economic elements of the model. These goals lead us to a number of linked modeling decisions:

• Our sample selection rule (since we collect our own data, we have some control over this.)

• Our choice of functional form.

• Our approach to the profitability signal received by the developer.

V.A. Joint Distribution of Developer Signals and Realized App Success

Since we know the comScore sampling frame, it is easy to work out the sampling distribution of S∗ and

of r∗ conditional on S and r. As a threshold point, the comScore sampling frame is undertaken in two

separate samples, so we can work out the independent distribution on each platform. It is easy to work

out the distribution of S∗p and r
∗
p conditional on rp. comScore has a sample of 5,000 users. Let g be

the number of platform p users that have the app in the comScore sample. The density of g is given by

the binomial density, f(g|rp) =
(
5000
g

)
(rp)

g(1 − rp)5000−g so the probability of the event g > 5, can be

easily calculated. Call this probability (which is one minus the binomial CDF evaluated at g = 6) Fg(rp).

Fg(rp) is Pr(S∗p = 1|rp). If the distribution of rp across apps is beta, then the sampling distribution of S∗p
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is beta-binomial. We choose our model of developer signals and realized app success to take advantage of

this.

We assume that developers get signals of the potential app success r̃ = (r̃i, r̃d) that have marginal beta

distributions but that need not be independent. Our model of this is a mixture model built up from

underlying beta distributions. There are three independent beta random variables, which we call qi, qd and

qb. The developer receives a signal

(r̃i, r̃d) =
(qb, qb) with probability ω

(qi, qd) with probability 1− ω
Further, we assume that qi ∼ beta(αi, βi) and qd ∼ beta(αd, βd), and that qb is distributed beta with

parameters that give it the mean and variance which are the average of those of qi and qd.8 So the

parameters to be estimated here are ω and αi, βi, which we interpret as the iOS parameters, and αd, βd,

which we similarly interpret as the Android parameters.

Our second modeling choice is the relationship between the developer’s pre-entry signal and post-entry

success. We reject the simplest model in which these are perfectly correlated based on industry facts

described above, such as the frequency of apps introduced with a large marketing push in the app stores,

that are not ultimately successes. Our specific model of less-than-perfect dependence between signal and

ultimate success draws the distinction between the reach the app would have if it were visible to all customers

by being on the top list in the app store, r̃p, and the reach it ultimately achieves, rp.

Not all apps can appear on the app store’s top list, and we model the probability that an app appears

on the top list as A(r̃p, τ). Here r̃p is the fraction of platform users that would choose the app if they knew

of it and τ is a parameter. So A() tells us the effi ciency of the app store at matching, and τ is a parameter

that indexes the effi ciency of the app store at matching. Similarly, we introduce another random variable,

rp, the reach the app would gain if it were relegated to the depths of the app store rather than being on the

top list. We assume that this is a "shrunk" version of r̃p, i.e. that rp˜beta and that the parameters of this

beta make E[ rp] = δE[ r̃p] and var[ rp] = δvar[ r̃p], with δ a new parameter to be estimated.

These assumptions mean that the effective demand for the app, rp, is given by

rp =


r̃p with probability A(r̃p, τ)

rp otherwise .

The variable rp determines the developer’s potential profits on platform p, and if the developer does

enter, rp is the random variable censored to determine S∗p and, r
∗
p.

Therefore, the app is written for platform p if and only if the following condition is satisfied:

8.We assume that µb =
αb

αb+βb
=

µi
2
+
µd
2
and σ2b =

σ2i
2
+
σ2d
2
in our estimation.
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(4) E[rp|r̃i, r̃d] = E[r̃pA(r̃p, τ) + (1−A(r̃p, τ))rp|r̃i, r̃d] ≥ κp.

V.B. Parameters and Likelihood

The parameters of the model, which together we call θ, are αi, βi, αd, βd, ω, τ , δ and κp. All of these

parameters will, in some specifications, vary with the regressors Xa. Above, we showed the conditions for

observing r∗p, and the sampling distribution of r
∗
p conditional on rp. Similarly, we showed the probability

that S∗p ,= 1 conditional on rp. Finally, we showed the event determining S, which is a crossing condition for

beta random variables. Under our assumptions, the distribution of rp is beta, so we can calculate (using the

beta binomial distribution) the likelihood of r∗ and S∗ and the probability of S. The joint distribution of

r∗, S∗ and S is the likelihood L(S, S∗, r∗|Xa, θ). We can calculate it in closed form given our assumptions,

of which the most important for this purpose is the beta functional form.

It is not hard to see how our model is identified and the role of the functional form of the distribution

in it. The distribution of (ri, rd) has beta marginals that depend on αi, βi, αd, βd, ω, τ , and δ. The

distribution of (ri, rd) are easily recovered by predicting the sample distribution of (r∗i , r
∗
d) conditional on

observing them. To get from the distribution of (ri, rd) back to the underlying distribution of (r̃i, r̃d) and

the mixing parameters we use the probability of the events (S, S∗) shown in Figure V.

The structure of the dependence among (r̃i, r̃d) appears limiting, because it is a mixture model, but for

predicting S and r∗, this is not an issue. The event Sp′ = 1 occurs not only when (r̃i, r̃d) = (qb, qb), but

also when both of the latent variables r̃i or r̃d takes a large value.

V.C. Sample

Since we collect our own data from primary sources, we have some control over the definition of our

sample. It is not possible to design a sample which is entirely free of selection bias: app developers who

have had an idea but who have failed to publish their app, for example, cannot in principle be observed.

We can, however, minimize the degree to which sample selection bias correction leads us to introduce new

assumptions.

Our sample consists of apps with S∗ 6= (0, 0), that is apps which appear in comScore on at least one

platform. The rationale for this is simple, if novel. Given that we only observe the censored variable r∗p

if S∗p = 1, we must introduce a model of the event S
∗
p = 1 in order to deal with the censoring. Under our

sampling scheme, observed potential entrants into platform p′ (the "other" platform) are those who appear
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TABLE III: App Supply States

d, i Si = 0 Si = 1 S∗i = 1
Sd = 0 ri r∗i
Sd = 1 rd rd, ri r∗i
S∗d r∗d r∗d, ri r∗d, r

∗
i

in the comScore data on platform p ("this" platform.) With an explicit model of the app appearing on

"this" platform, we can correct for the selection bias in our treatment of entry into the "other" platform.

Of course, we treat both platforms symmetrically and examine the joint distribution of S, S∗, and r∗.

The two sets of two dummy variables S and S∗ define 9 possible states (combinations of whether an app

is available on each platform and whether it has achieved the demand threshold to be observed in comScore

for each platform). Because of our sampling scheme, however, we only observe 5 of these states. These are

the 5 cells in Table III which contain at least one r∗p. The reach for each state is presented in each cell of

the table. Since this sample definition is conditional on the dependent variable of app supply to platforms,

we must also redefine the likelihood to adjust for this conditioning, a topic we address in a moment.

Entry models generally need to condition on something in order to define the set of potential entrants.

The problem is that firms that have not entered any market do not exist and that data on them cannot

be gathered. A variety of solutions have grown up to deal with this. Berry (1992), and many papers

following in that tradition, define the set of potential entrants into a particular market by observing firms

that have already entered related markets. In his example, potential entrants into a particular airline city

pair market are firms serving other city pair markets already. This sample definition conditions on the

lagged dependent variable in an adjacent market. One could hope that the double attenuation that comes

both from lagging and from looking at an adjacent market renders any sample selection bias small (the most

common solution) or one could attempt to correct for sample selection bias. Another solution is to avoid

defining a set of potential entrants, but instead examine a fixed set of market niches each of which could

(or could not) be filled by a particular entrant. Bresnahan and Reiss (1991) use this approach, as does

Mazzeo (2002) who looks at entry in the categories of high-quality motels and low-quality motels. The

Bresnahan-Reiss approach only works when one can define the market niches a priori, so we cannot use it.

The Berry approach, with a correction for the sampling process, works for us because we observe a parallel

market, i.e., for entry into iOS we look at hit apps on Android.

Our model can be understood as having many of the features of a "Type II" Tobit. This familiar model

is written y2 =

y
∗
2 if y∗1 > 0

0 if y∗1 ≤ 0

, where y2 is a variable, like reach on one platform for app a for us, that is
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only observed if an event, labeled in the Tobit as y∗1 > 0, occurs.

A simplified version of our model would have exactly this structure. Suppose we were only studying

entry into platform d, and we gather our sample of firms that have entered and been successful on platform

i. Then we would let y∗2 ≡ rD and introduce y∗1 ≤ 0 as a model of sample selection. If these two random

variables (demand on platform d and entry and success on platform i) are correlated, as one would expect,

then we would use the Type II Tobit to deal with the relevant sample selection problem.

This simplified version is how we solve a classic econometric problem in models of entry. If the set of

potential entrants into one market are actual entrants in another market, and if profits in the two markets

are correlated, there is a sample selection problem.

We use this same sample selection logic but embed it in the structure of our model, which involves a few

changes in the specifics. First, our model is symmetric across the two platforms, so that there are two y∗2

variables, and we have different conditions for observing the two y2 variables. We have two variables like

y2: rd and ri are both observed only conditional on events. Second, in our model, y∗1 > 0 (the condition

for observing rd or ri ) is a compound event, depending not only on the realization of reach but also on the

app being included in our sample. We observe rd if r∗d > .001. Third, we observe not only the truncated

reach, but also the fact of writing for the platform or not; these events are observable whenever the app is

part of our sample. None of these complications changes the nature of our approach to sample selection

profoundly.

We choose a symmetric (across platforms) sample selection rule, and thus study entry into (and success on)

the markets defined by both platforms simultaneously. We have both economic and econometric reasons for

taking this approach. From an economic perspective, our platform focus leads us to studying multihoming,

i.e., entry into both platforms, which requires the symmetric treatment. From an econometric perspective,

modeling both platforms at once is our best identification strategy. We have no instruments for the "selection

equation," so we need to put economic restrictions on the conditioning event. In our approach, each

conditioning event has a full economic model, since it is part of our dependent variable.

V.D. Sampling Correction

We start from the universe of potential app developers who have an idea for an app. We have already

defined the unconditional likelihood, L(S, S∗, r∗|Xa, θ). We have already shown how to calculate the

probability of the events S∗p = 1. Using the same logic, we calculate the probability, FS(S, S∗, r∗|Xa, θ)

that either S∗d = 1 or S
∗
i = 1 or both. Then we maximize the conditional likelihood
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TABLE IV: Model Estimates of Reach Moments

Mean Reach on Android Mean Reach on iOS
Potential Realized Potential Realized

In Sample 0.0310 0.0076 0.0293 0.0079
In Population 0.0294 0.0070 0.0280 0.0076

(0.0064,0.0383) (0.0036,0.0089) (0.0067,0.0373) (0.0033,0.0089)

(5) LC(S, S
∗, r∗|Xa, θ) = L(S, S∗, r∗|Xa, θ)/FS(S, S

∗, r∗|Xa, θ)

VI. Results

In Table IV, we present the mean estimated potential reach r̃p and mean estimated realized reach rp for

apps on Android and iOS based on our model. The first line of results shows these calculations using

sample frequencies as weights. The second line of the results shows these calculations when we weight

using the implied population frequencies calculated using Bayes law. Bootstrapped confidence intervals are

in parentheses below the calculations.

The difference between the sample and population results reflects the effect of accounting for entry

selection. As expected, when we compare the first and second rows within each of the four columns, the

sample reaches are higher than the population reaches, since the sample does not consider the distribution

of regressors in the apps which did not reach the comScore observation threshold.9 Those would have been

apps with lower reach, and thus they bring down the mean reach in the population estimates. Henceforth,

we focus on the population estimates, since we are interested in the implications of our estimates for all

developer activity.

The first result we have comes from comparing the respective reaches of Apple to Android. There is

strikingly little difference between the expected potential reach on Android compared to iOS (0.0294 vs.

0.0280) and the expected realized reach on Android compared to iOS (0.0070 vs. 0.0076).10 This implies

that there is very little difference from the developer’s perspective in terms of the type of customers they

face on iOS and Android: regardless of which platform they enter, they are likely to get the same demand

response from the users on that platform. We will examine later in this section whether this varies with

app and developer heterogeneity.

9. Tests of signficance of differences forthcoming.
10. Tests of signficance of differences forthcoming.
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TABLE V: Model Estimates in Population

Mean Realized Reach on Android Mean Realized Reach on iOS
None 0.0070 0.0076

(0.0036,0.0089) (0.0033,0.0089)
Written for Android 0.0091 0.0085

(0.0052,0.0118) (0.0046,0.0102)
Written for iOS 0.0089 0.0100

(0.0060,0.0119) (0.0059,0.0122)

When we compare the difference between potential and realized reach within each of the platforms (0.0294

vs. 0.0070 on Android and 0.0280 vs. 0.0076 on iOS), we observe a substantial difference between these

numbers.11 This suggests that there is value to allowing our model to estimate two separate reaches, and if

we interpret this gap as representative of marketing costs, it confirms our findings from industry interviews

and in the rankings data that marketing is a significant cost to successfully reaching demand.

We now focus our attention on the population mean estimated realized reach estimates, since this is

what determines app profitability. We examine mean estimated rp conditional on having entered the iOS or

Android markets. The first row of Table V replicates the second line of Table IV, representing the estimated

mean reach taken over the entire population of types. The second row of Table V presents the estimated

mean reach if we focus on those apps which were written for Android. The first column of estimates shows

the reach for those apps on Android, and the second column shows the reach for those apps on iOS. The third

row of Table V presents the estimated mean reaches for apps which were written for iOS. Again, the first

column shows the estimated reach for those apps on Android, and the second column shows the estimated

reach for those apps on iOS. Bootstrapped confidence intervals are in parentheses below all figures.

If we examine the reach on Android in the first column, we see that conditioning on the fact that this

app was written for Android makes the expected realized reach much higher than in the overall population,

as expected (0.0091>0.0070).12 The equivalent comparison for Apple can be found by looking at the row

"Written for iOS" and the last column of the table, "Mean Realized Reach on iOS". Again, we see that

knowing that an app was written for iOS implies a much higher estimated mean reach (0.0100>0.0076).

These results themselves simply reflect developer rationality, but we can learn much by comparing them

quantitatively to other statistics.

One such comparison looks at how the condition that an app was written for Android affects the estimated

reach of that app on iOS (second row and last column of Table V). In other words, what is the expected

realized reach that would arise from multihoming on iOS for an app knowing only that it was written for

11. Tests of signficance of differences forthcoming.
12. Tests of signficance of differences forthcoming.

20



Android? We see that compared to the overall population, the reach is higher for apps which have already

been written on Android (0.0085>0.0076).13 Analogously, if we look at the last row and first column of

Table V, we see that an app written for iOS is going to have much higher estimated reach on Android than

in the overall population (0.0089>0.0070). What is striking about these numbers is the comparison to the

figures we examined in the last paragraph. Predicted demand for an app on Android conditional on being

written for iOS is quite similar to predicted demand for an Android app conditional on being written for

Android itself. The symmetric result holds for an app on iOS. Our estimates are revealing large positive

dependence between the demand for an app on iOS and the demand for the same app on Android.

Table V allows us to calculate an index number that suggests that most of the contribution from app

availability to the attractiveness of either platform to users comes from multihoming apps, not from apps

that uniquely choose that platform. Recall from our economic model of users that the index of the platform

value to users is the sum of reaches of all apps available on that platform,
∑
a∈Np

rpa. The value of multihoming

apps can therefore be represented by the ratio of the sum of rp for all apps written for p′, denoted
∑

a∈Np′

rpa,

to
∑
a∈Np

rpa, which is equivalent to the ratio of the mean rp written for p′ to mean rp if Np′ = Np, which

is approximately true in our setting. So for Android, the percent contribution of iOS apps if they were

launched on Android to Android’s value to users is 0.0089/0.0091 = 98%. For iOS, the percent contribution

of Android apps if they were launched on iOS to iOS’s value to users is 0.0085/0.0100 = 85%. The contribution

of multihomers to platform value is slightly higher on Android than on iOS, but in both cases the majority

of both platforms’values comes from multihomers.

In Table VI, we present the distribution of mean realized reach on each platform broken out by different

observable types of developers and apps captured by X. We also calculate the difference between those

reaches to test whether there are differences in preferences for platforms connected to these observable types.

The last column indicates the number of apps in each category from our sample. Confidence intervals for

the preference differences are reported underneath in parentheses. In all cases, the differences are not

statistically different. Indeed, if we examine the parameter estimates for each of these cases reported in

Tables ??-X, we see that the estimated threshold reach κp over which a developer will write to a platform is

very similar in all cases across platforms, so even the decision rule for both platforms is almost identical.14

This contradicts the explanation that strong platform preferences divide the developers. The developers have

no particular reason to favor one of these platforms over the other except to the extent that one platform

has more users than the other: in that case, the equal reaches on both platforms would lead to a higher

absolute number of customers on the larger platform.

13. Tests of signficance of differences forthcoming.
14. Tests of signficance of differences forthcoming.
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Table VI also shows that the developers in the observable categories with the highest mean reach (Non-

Games, Online and Offl ine) tend to also have the smallest preference differences between the two platforms.

Furthermore, estimates of ω, the correlation on the joint distribution between potential reaches r̃i and r̃d, are

shown in Tables VIII and X to be particularly high for Publicly Traded (whether Online or Offl ine) developers.

Note that Non-Games, Online and Offl ine, and Publicly Traded are all characteristics of established firms.

The combination of highly correlated and high reach on both platforms and small preference differences

between platforms creates a strong incentive for these apps to multihome. As a result, consumers can access

these applications, which they find most attractive, on either platform. In contrast, the Mobile Only firms

(most of whom are Not Publicly Traded), reflecting entrepreneurs, have the lowest reach on all platforms

and the lowest estimated ω.

Our results are consistent with the idea that more established firms avoid the marketing costs of reaching

customers because they already have a relationship with their current installed base of customers. They

are therefore not encumbered by the competition to rank highly on the collaborative filters. The costs of

the app store fall heavily on firms that are trying to acquire new customers in the mobile world (e.g. mobile

entrepreneurs) and much less for those for whom the mobile world is an extension of existing customer

relationships (e.g. banks).

In results not reported in tables, we check the stability of our results over time by running our model

on data from September, 2012. All results are similar. We interpret this as confirming that there has been

little change in developer incentives over the relevant time scale. Of course, checking over a much longer

period of time might reveal movements in developer preferences.

VII. Conclusion

We have estimated a model of developer platform choice on a new dataset of mobile app developers’

smartphone supply decisions. We examine the decision to supply for either or for both of the dominant

platforms. Our model treats supplying for a platform much like models of entry treat serving a market: a

platform will be supplied with an app only if expected demand for the app on that platform is high enough

to generate variable profits that cover the incremental fixed costs of writing and marketing. Fortunately for

identification, we have some outcome variables in addition to developers’app supply decisions. For apps

that are at least moderately successful, we also observe quantity demanded in a sample of users.

Our model has a novel element that we hope is useful in entry studies generally. We show how to correct

for the unavoidable problem that the set of potential entrants into markets is either unobserved or selected.

In our application, the quantitative importance of selection is high, as we see large differences in estimated
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TABLE VI: Expected Differences in Platform Preferences (Android - iOS) and Mean
Estimated Realized Reach

Lines of Business Pref Difference Android iOS N
Games, Not Publicly Traded

Online -.0021 .0052 .0073 48
(-.0080,.0012)

Mobile Only -.0003 .0037 .0040 177
(-.0024,.0011)

Offl ine -.0025 .0058 .0083 22
(-.0065,.0001)

Games, Publicly Traded
Online -.0019 .0059 .0078 24

(-.0090,.0021)
Mobile Only .0015 .0036 .0021 3

(-.0035,.0049)
Offl ine -.0023 .0064 .0087 53

(-.0083,.0009)
Non-Games, Not Publicly Traded

Online -.0007 .0092 .0099 151
(-.0050,.0044)

Mobile Only .0014 .0062 .0049 257
(-.0011,.0055)

Offl ine -.0011 .0083 .0094 76
(-.0048,.0033)

Non-Games, Publicly Traded
Online -.0004 .0163 .0167 80

(-.0081,.0054)
Mobile Only .0053 .0086 .0033 1

(-.0025,.0114)
Offl ine -.0003 .0102 .0105 152

(-.0069,.0037)
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TABLE VII: Model Parameter Estimates (GAMES, No PT)

Parameter Android iOS
τ .87

(0.39,1.00)
δ .19 .21

(0.22,0.96) (0.12,0.90)
Online Firm

α 1.46 0.94
(0.22,2.33) (0.20,1.86)

β 62.2 31.8
(28.0,81.5) (17.9,61.5)

κ .0054 .0072
(.0026,.0085) (.0036,.0128)

ω .56
(.10,.96)

Mobile Only Firm
α 1.08 0.69

(0.08,1.54) (0.07,1.79)
β 62.4 41.8

(31.1,83.2) (29.1,73.9)
κ .0033 .0035

(.0006,.0040) (.0008,.0052)
ω .11

(.20,.68)
Offl ine Firm

α 2.28 2.62
(0.04,2.47) (0.14,3.70)

β 86.4 75.6
(30.8,102.1) (28.4,101.0)

κ .0052 .0074
(.0006,.0071) (.0014,.0110)

ω .61
(.26,.91)

24



TABLE VIII: Model Parameter Estimates (GAMES, PT)

τ .87
(0.39,1.00)

δ .19 .21
(0.11,0.96) (0.12,0.90)

Online Firm
α 1.14 0.46

(0.12,4.48) (0.11,2.26)
β 45.4 14.9

(24.7,66.2) (6.50,50.2)
κ .0091 .0102

(.0046,.0210) (.0062,.0198)
ω .88

(.60,1.0)
Mobile Only Firm

α 0.76 0.20
(0.04,2.83) (0.03,1.54)

β 45.6 24.9
(29.5,76.4) (14.2,62.2)

κ .0069 .0065
(.00153,.0184) (.0022,.0171)

ω .43
(.35,.96)

Offl ine Firm
α 1.96 2.13

(0.30,3.17) (0.33,3.15)
β 69.6 58.7

(33.2,83.9) (16.9,80.3)
κ .0089 .0103

(.0038,.0223) (.0056,.0209)
ω .93

(.69,.97)
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TABLE IX: Model Parameter Estimates (non-GAMES, No PT)

τ .87
(0.39,1.00)

δ .19 .21
(0.11,0.96) (0.12,0.90)

Parameter Android iOS
Online Firm

α 1.27 0.96
(0.22,2.81) (0.23,2.55)

β 33.3 25.8
(18.7,49.6) (13.4,45.4)

κ .0072 .0079
(.0050,.0122) (.0045,.0133)

ω .49
(.00,.87)

Mobile Only Firm
α 0.89 0.70

(0.16,1.96) (0.15,1.79)
β 33.4 35.8

(12.6,65.4) (26.3,63.5)
κ .0050 .0042

(.0030,.0092) (.0025,.0064)
ω .05

(.00,.64)
Offl ine Firm

α 2.09 2.64
(0.28,2.36) (0.34,3.97)

β 57.4 69.6
(23.9,70.9) (26.9,80.0)

κ .0070 .0081
(.0037,.0111) (.0044,.0112)

ω .54
(.17,.89)
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TABLE X: Model Parameter Estimates (non-GAMES, PT)

τ .87
(0.39,1.00)

δ .19 .21
(0.11,0.96) (0.12,0.90)

Parameter Android iOS
Online Firm

α 0.95 0.47
(0.10,4.97) (0.08,3.20)

β 16.5 8.95
(6.21,45.3) (4.42,41.1)

κ .0109 .0109
(.0081,.0226) (.0075,.0215)

ω .81
(.49,.96)

Mobile Only Firm
α 0.57 0.22

(0.05,3.96) (0.03,2.42)
β 16.6 19.0

(3.55,55.2) (6.69,52.2)
κ .0087 .0072

(.0043,.0200) (.0030,.0188)
ω .37

(.10,.89)
Offl ine Firm

α 1.77 2.15
(0.30,3.72) (0.37,3.30)

β 40.6 52.7
(22.3,50.1) (19.5,57.2)

κ .0107 .0111
(.0074,.0239) (.0076,.0226)

ω .86
(.29,.95)
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developer profitability between the selected sample of potential entrants and the much larger population.

We find that there are dramatic differences in app profitability by observable developer type and app

type. From an economic growth perspective, the most important of these is the difference between entrepre-

neurial app developers and established firms. Since the mobile app platforms provide the vast bulk of the

technical inputs needed to create a working system, many forecast, correctly, that there would be a wave of

entrepreneurship in mobile apps. Many also forecast that this wave of entrepreneurs would disrupt existing

businesses on a massive scale. Perhaps so someday, but at this stage the supply of mass market mobile apps

is overwhelmingly from established firms. Based on our many industry interviews, we attribute much of the

difference between firm types to marketing costs. (Our estimates can only pin it on fixed costs, not on the

form of fixed costs.) It appears that the high costs of finding customers for new firms —some of which can

be attributed to the considerable diffi culty of matching buyer to seller on the platform-supplied app stores

—are limiting the role of entrepreneurship.

The platform race on smartphones in the US has been approximately tied for a surprisingly long time.

Our results provide an explanation of this otherwise quite surprising fact. As a threshold empirical result, we

see that (1) there is little difference in expected profitability for developers between the two platforms. This

means that an equilibrium with divided platform choices exists. Such equilibria are typically not stable, and

platform markets tend to tip from them. However, our other results explain why this market does not tip:

(1) The distribution of app attractiveness to consumers is skewed, with a small minority of apps drawing

the vast majority of consumer demand. (2) Apps which are highly demanded on one platform tend also

to be highly demanded on the other platform. (3) These highly demanded apps have a strong tendency

to multihome, writing for both platforms. As a result, the presence or absence of apps offers little reason

for consumers to choose a platform. A consumer can choose either platform, and have access to the most

attractive apps. This undercuts the mechanism by which the platform market might tip. What would

ordinarily be the unstable platform market equilibrium, with an approximate tie between iOS and Android,

is rendered stable. This result, which we came to empirically, does not appear in the theoretical literature.
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